Bibliography

Bibliography#

[Shu17]

Shutter Speed. 2017.

[Exp17]

The Exposure Triangle. 2017.

[Und17]

Understanding Aperture and Depth of Field. 2017.

[BBO+20]

Peter Betlem, Thomas Birchall, Kei Ogata, Joonsang Park, Elin Skurtveit, and Kim Senger. Digital Drill Core Models: Structure-from-Motion as a Tool for the Characterisation, Orientation, and Digital Archiving of Drill Core Samples. Remote Sensing, 12(2):330, 2020. doi:10.3390/rs12020330.

[BR24]

Peter Betlem and Nil Rodes. Geo-SfM: Teaching Geoscientific Structure-from-Motion Photogrammetry Processing. Zenodo, 2024. doi:10.5281/zenodo.11173239.

[BRMCVK24]

Peter Betlem, Nil Rodes, Sara Mollie Cohen, and Marie Vander Kloet. Jupyter Book as an open online teaching environment in the geosciences: Lessons learned from Geo-SfM and Geo-UAV. Geoscience Communication Discussions, pages 1–21, 2024. doi:10.5194/gc-2024-6.

[BRodesB+23]

Peter Betlem, Nil Rodés, Thomas Birchall, Anders Dahlin, Aleksandra Smyrak-Sikora, and Kim Senger. Svalbox Digital Model Database: A geoscientific window into the High Arctic. Geosphere, 19(6):1640–1666, 2023.

[Cuc16]

Davide A. Cucci. ACCURATE OPTICAL TARGET POSE DETERMINATION FOR APPLICATIONS IN AERIAL PHOTOGRAMMETRY. 2016.

[ORK+21]

Jin-Si R. Over, Andrew C. Ritchie, Christine J. Kranenburg, Jenna A. Brown, Daniel D. Buscombe, Tom Noble, Christopher R. Sherwood, Jonathan A. Warrick, and Phillipe A. Wernette. Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6—Structure from motion workflow documentation. Technical Report 2021-1039, U.S. Geological Survey, 2021. doi:10.3133/ofr20211039.

[WBG+12]

M. J. Westoby, J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M. Reynolds. `Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179:300–314, 2012. doi:10.1016/j.geomorph.2012.08.021.

[AgueraVegaCarvajalRamirezMartinezCarricondo17]

Francisco Agüera-Vega, Fernando Carvajal-Ramírez, and Patricio Martínez-Carricondo. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98:221–227, 2017. doi:10.1016/j.measurement.2016.12.002.

[GarridoJuradoMunozSalinasMadridCuevasMarinJimenez14]

S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6):2280–2292, 2014. doi:10.1016/j.patcog.2014.01.005.

[HumboldtSUniversity16]

Humboldt State University. Structure from Motion (SfM). 2016.

[InternatonalAoOaGProducers19]

Internatonal Association of Oil and Gas Producers. Geomatics Guidance Note 7, part 2 - Coordinate Conversions and Transformations including Formulas. 2019.

[Lobsterbake09]

Lobsterbake. Mesh overview. 2009.

[MartinezCarricondoAgueraVegaCarvajalRamirez+18]

Patricio Martínez-Carricondo, Francisco Agüera-Vega, Fernando Carvajal-Ramírez, Francisco-Javier Mesas-Carrascosa, Alfonso García-Ferrer, and Fernando-Juan Pérez-Porras. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72:1–10, 2018. doi:10.1016/j.jag.2018.05.015.